Road Extraction from Lidar Data Using Support Vector Machine Classification

نویسندگان

  • Ali Akbar Matkan
  • Saeed Sadeghian
چکیده

This paper presents a method for road extraction from lidar data based on SVM classification. The lidar data are used exclusively to evaluate the potential in the road extraction process. First, the SVM algorithm is used to classify the lidar data into five classes: road, tree, building, grassland, and cement. Then, some misclassified pixels in the road class is removed using the road values in the normalized Digital Surface Model and Normalized Difference Distance features. In the postprocessing stage, a method based on Radon transform and Spline interpolation is employed to automatically locate and fill the gaps in the road network. The experimental results show that the proposed algorithm for gap filling works well on straight roads. The proposed road extraction algorithm is tested on three datasets. An accuracy assessment indicated 63.7 percent, 60.26 percent and 66.71 percent quality for three datasets. Finally, centerline of the detected roads is extracted using mathematical morphology.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Common Spatial Patterns Feature Extraction and Support Vector Machine Classification for Motor Imagery with the SecondBrain

Recently, a large set of electroencephalography (EEG) data is being generated by several high-quality labs worldwide and is free to be used by all researchers in the world. On the other hand, many neuroscience researchers need these data to study different neural disorders for better diagnosis and evaluating the treatment. However, some format adaptation and pre-processing are necessary before ...

متن کامل

Heart Rate Variability Classification using Support Vector Machine and Genetic Algorithm

Background: Electrocardiogram (ECG) is defined as an electrical signal, which represents cardiac activity. Heart rate variability (HRV) as the variation of interval between two consecutive heartbeats represents the balance between the sympathetic and parasympathetic branches of the autonomic nervous system.Objective: In this study, we aimed to evaluate the efficiency of discrete wavelet transfo...

متن کامل

Classifier Fusion of Hyperspectral and Lidar Remote Sensing Data for Improvement of Land Cover Classifcation

The interest in the joint use of remote sensing data from multiple sensors has been remarkably increased for classification applications. This is because a combined use is supposed to improve the results of classification tasks compared to single-data use. This paper addressed using of combination of hyperspectral and Light Detection And Ranging (LIDAR) data in classification field. This paper ...

متن کامل

Comparison of Parametric and Non-parametric EEG Feature Extraction Methods in Detection of Pediatric Migraine without Aura

Background: Migraine headache without aura is the most common type of migraine especially among pediatric patients. It has always been a great challenge of migraine diagnosis using quantitative electroencephalography measurements through feature classification. It has been proven that different feature extraction and classification methods vary in terms of performance regarding detection and di...

متن کامل

A Novel Algorithm for Road Extraction from Airborne Lidar Data

Road data in 3-dimensional forms is required for a variety of geospatial applications e.g. road maintenance, transport planning and location-based services. Although airborne lidar can produce dense point clouds from which 3-dimensional road information can be retrieved in detail, lidar data is often incomplete due to the line-of-sight requirement, and therefore a better result of information e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014